
C O M P U T E | S T O R E | A N A L Y Z E
33

Scaling DL Training Workloads with the Cray PE Plugin

Luiz DeRose
Sr. Principal Engineer

Programming Environments Director

NERSC - June 14, 2018 Luiz DeRose © 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
34

L5-Full Aut. Dr.

Training data CNN Labeled Data

Training No Driver

Results Supervised Learning

Backend

request

Frontend

Real-time data Inference Mission and Trajectory Planning

Sensors

Sensor fusing

Perception Cognition Action

Autonomous Driving

NERSC - June 14, 2018 Luiz DeRose © 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
35

Deep Learning in Science - NERSC

Opportunities to apply DL

widely in support of classic

HPC simulation and

modelling.

NERSC - June 14, 2018

C O M P U T E | S T O R E | A N A L Y Z E
36

The Deep Learning Part in Autonomous Driving

● Model training is the most crucial and challenging aspect
● Many tasks to train for in autonomous driving

● Stereo

● Optical flow

● Visual odometry

● Structure-from-motion

● Object detection

● Recognition and tracking

● 3D scene understanding

● Many NNs to train for each task
● Retraining (or transfer learning) happens when new data is available

● A trained neural network can also be a powerful tool for
● Pattern recognition
● Classification
● Clustering
● Others…

NERSC - June 14, 2018 Luiz DeRose © 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
37

The Deep Learning Software Landscape

TensorFlow is nearly as popular as all other frameworks combined

0

10000

20000

30000

40000

50000

60000 56…

17824

10681
9635

6847 6640 6271
4845 4628

1731

G
it

h
u

b
 S

ta
rs

 a
s

 o
f

M
a

y
 2

0
1

7

Deep Learning Toolkits

TensorFlow Caffe CNTK MXNet Torch DeepLearning4j Theano PaddlePaddle Caffe2 BigDL

NERSC - June 14, 2018 Luiz DeRose © 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
38

Scaling Deep Learning - Motivation

● Scaling Deep Learning training is a tool for
● Models that take a very long time to train

● and have a very large training dataset
● Increasing the frequency at which models can be retrained with new or improved data

● It is critical to be able to update the models (when new data arrives) in a
matter of minutes

● Hyper-Parameter Optimization
● For problems and datasets where baseline accuracy is not known

● learning rate schedule
● momentum
● batch size

● Evolve topologies if good architecture is unknown (common with novel datasets /
mappings)
● Layer types, width, number filters
● Activation functions, drop-out rates

NERSC - June 14, 2018 Luiz DeRose © 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
39

HPC Attributes

● DL training is a classic high-performance computing
problem which demands:
● Large compute capacity in terms of FLOPs, memory capacity and

bandwidth

● A performant interconnect for fast communication of gradients
and model parameters

● Parallel I/O and storage with sufficient bandwidth to keep the
compute fed at scale

NERSC - June 14, 2018 Luiz DeRose © 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
40

The Cray PE DL Scalability Plugin Project Overview

● Cray’s primary goals were:
● Design a solution for scaling TensorFlow (specifically synchronous SGD)

to significantly larger node counts than existing methods allowed
● Should require minimal changes to user training scripts and provide a more

friendly user experience

● Achieve the best possible TensorFlow performance on Cray Systems

● Maintain accuracy for a given number of steps and hyper-parameter
setup allowing for significantly reduced time-to-accuracy through scaling

● Ideally have a portable solution that would work with other
deep learning frameworks

NERSC - June 14, 2018 Luiz DeRose © 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
41

Data Parallelism - Collective-based Synchronous SGD

● Data parallel training divides a global mini-batch of examples across processes
● Each process computes gradients from their local mini-batch
● Average gradients across processes
● All processes update their local model with averaged gradients

● all processes have the same model

● Not shown is the I/O activity of reading training samples and possible
augmentation)

Compute

intensive

Communication

intensive

Typically not

much compute

NERSC - June 14, 2018 Luiz DeRose © 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
42

Data Parallel Synchronous SGD

● Operations in a “step” of SGD

● Parallel operations highlighted
with light blue box

● Communication highlighted in
light red box
● Maps to an allreduce

● Non-parallel work is the remainder

● For a fixed local mini-batch size
per process, the fraction of time in
parallel work is constant as more
processes are added

Read/prepare local

mini-batch

Compute gradients

Reduce gradients across

all process (local mini-batches)

Update weights and

biases with gradients

NERSC - June 14, 2018 Luiz DeRose © 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
43

Distributed TensorFlow

● TensorFlow has a native method for parallelism across nodes
● ClusterSpec API

● Uses gRPC layer in TensorFlow based on sockets

● Can be difficult to use and optimize

● User must specify
● hostnames and ports for all worker processes

● hostnames and ports for all parameter server processes (see next slide)

● # of workers

● # of parameter server processes

● Chief process of workers

NERSC - June 14, 2018 Luiz DeRose © 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
44

Distributed TensorFlow

● Parameter device is a separate process possibly requiring additional nodes
● Number of parameter devices processes to use is not clear

● Communication is an allreduce but not implemented that way

● Several gradient “aggregation” methods possible in TensorFlow

● All implement an allreduce as a set of gather/bcast operations with point-to-point over sockets

input

model

input

model

input

model

Update Update Update

add add addScalable Global Add

.

Device 1 Device 2 Device n

P P P

ΔP
Client Client Client

Cray Method

No Parameter devices

needed in the Cray

method

Resources dedicated

to gradient calculation

NERSC - June 14, 2018 Luiz DeRose © 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
45

Training Script Modifications

● The Cray PE DL Plugin require the following modifications to a
serial training script

1. Importing the Python module

2. Initialize the module

● Possibly configure the thread team(s) for specific uses

3. Broadcast initial model parameters

4. Incorporate gradient aggregation between gradient computation and model

update

5. Finalize the Python module

NERSC - June 14, 2018 Luiz DeRose © 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
46

Cray PE DL Scalability Plugin Performance

NERSC - June 14, 2018 Luiz DeRose © 2018 Cray Inc.

32

10032

20032

30032

40032

50032

60032

70032

80032

8 16 32 64 128 256 512

s
a

m
p

le
s

 /
 s

e
c

P100 GPUs (Nodes)

Inception v3 Throughput
CSCS Piz Daint P100

Batch Size = 64 per Process

gRPC CPE DL Plugin Ideal

32

5032

10032

15032

20032

25032

30032

35032

40032

8 16 32 64 128 256 512 1024

s
a

m
p

le
s

 /
 s

e
c

KNL Nodes

ResNet50 Throughput
NERSC Cori KNL

Batch Size = 32 per Process

CPE DL Plugin Ideal

91% efficient at 512 nodes

1.8X faster than gRPC at 128

nodes

89% efficient at 1024 nodes

Ideal derived from

single node with no

communication SW

See Peter Mendygral’s

talk on Thursday at 1:30

C O M P U T E | S T O R E | A N A L Y Z E
47

Horovod / CPE DL Plugin – Throughput Scaling

32

128

512

2048

8192

32768

131072

1 4 16 64 256 1024

S
a

m
p

le
s

/s
e

c
 (

a
g

g
re

g
a

te
)

Nodes (GPUs)

Inception v3 Performance on XC50 (Piz Daint at
CSCS) – CPE DL Plugin ONLY

MBS=4 MBS=16 MBS=32

MBS=64 MBS=64 (gRPC) 200 x N

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

2 8 32 128 512

S
a

m
p

le
s

/s
e

c
 (

a
g

g
re

g
a

te
)

Nodes

ResNet50 Performance on XC40 (Cori KNL at NERSC)
Horovod and CPE DL Plugin

CPE ML Plugin - MBS=128 CPE ML Plugin - MBS=32 Horovod - MBS=32

CPE DL Plugin

1.8X faster than

gRPC at 128 nodes

1.4X faster than

Horovod at 128

nodes, 3.2X at

1024 nodes

CPE DL Plugin - MBS=128 CPE DL Plugin - MBS=32

NERSC - June 14, 2018 Luiz DeRose © 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
48

Cray PE DL Scalability Plugin

● Users can easily achieve ideal scaling
performance across DL frameworks
utilizing stochastic gradient descent

1. Load a module

2. Plug in a few simple lines to your serial
Python or C-based training script

3. Scale up your training workload to
hundreds of nodes or more on Cray
systems

● Delivers high performance across a variety
of Cray node architectures

● Cray customers can leverage their existing
compute nodes to scale DL training

NERSC - June 14, 2018 Luiz DeRose © 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
49

Legal Disclaimer

NERSC - June 14, 2018 Luiz DeRose © 2018 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is

granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published

specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third

parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at

the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.

products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and

YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT,

DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are

trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the

exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their

respective owners.

C O M P U T E | S T O R E | A N A L Y Z E
50

Thank You!

Questions?

